Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(9): 092701, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930937

ABSTRACT

The ^{18}O(α,γ)^{22}Ne reaction is critical for AGB star nucleosynthesis due to its connection to the abundances of several key isotopes, such as ^{21}Ne and ^{22}Ne. However, the ambiguous resonance energy and spin-parity of the dominant 470 keV resonance leads to substantial uncertainty in the ^{18}O(α,γ)^{22}Ne reaction rate for the temperature of interest. We have measured the resonance energies and strengths of the low-energy resonances in ^{18}O(α,γ)^{22}Ne at the Jinping Underground Nuclear Astrophysics experimental facility (JUNA) with improved precision. The key 470 keV resonance energy has been measured to be E_{α}=474.0±1.1 keV, with such high precision achieved for the first time. The spin-parity of this resonance state is determined to be 1^{-}, removing discrepancies in the resonance strengths in earlier studies. The results significantly improve the precision of the ^{18}O(α,γ)^{22}Ne reaction rates by up to about 10 times compared with the previous data at typical AGB temperatures of 0.1-0.3 GK. We demonstrate that such improvement leads to precise ^{21}Ne abundance predictions, with an impact on probing the origin of meteoritic stardust SiC grains from AGB stars.

SELECTION OF CITATIONS
SEARCH DETAIL
...